

SERIES 355 -- ALTERNADORES SÍNCRONOS

50/60 Hz 4 POLOS - Trifásico

Especificaciones Generales

Jobenergy, es un productor de energía independiente y reconocido internacionalmente, especializado exclusivamente en la fabricación de alternadores síncronos.

Jcbenergy enfoca su misión corporativa en diseños originales y hechos por sí mismos; Soluciones innovadoras y proporcionar un desarrollo sostenible a largo plazo.

Los equipos técnicos turcos y extranjeros siempre están trabajando con su conocimiento y experiencia para cumplir con las demandas y proyectos universales y tener un aumento continuo en el rendimiento, la vida útil total y la confiabilidad general de los productos. Jobenergy continúa los estudios de I+D con universidades tanto en Europa como en otros países que tienen un amplio conocimiento sobre sus productos.

Se ha demostrado que los alternadores síncronos de Jobenergy soportan las aplicaciones ambientales más duras. Demostraron ser una de las marcas de alternadores más confiables y preferidas en todo el mundo con su sistema autoexcitador y sin escobillas, regulador de voltaje electrónico (AVR), forma de onda estable, baja distorsión armónica y alta eficiencia.

En caso de demanda, Jobenergy también puede producir alternadores de corriente continua (CA), alternadores de baja tensión (LV) de 50-60 Hz, alternadores de media tensión, alternadores de alta tensión; alternadores para torres de iluminación, alternadores de soldadura, alternadores de clase IP44 y PI54 para aplicaciones marinas, alternadores de velocidad variable para proyectos de telecomunicaciones y grúas; alternadores de alta frecuencia para unidades terrestres, radares, aviones y helicópteros.

Aplicación del Producto

Los alternadores Jobenergy se utilizan principalmente en la aplicación de grupos generadores en diésel, gasolina y gas. También pueden operar con turbinas de vapor o hidráulicas. Operan en todas las configuraciones de grupos generadores de emergencia, centrales eléctricas o fuentes de energía continua.

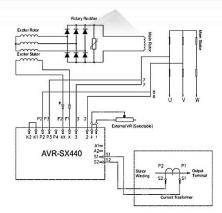
- Complejo industrial y comercial.
- Torres de telecomunicaciones y telefonía celular, transmisores de radio y televisión.
- Industria de defensa y proyectos militares.
- Sitios de construcción, minería, trituradoras de piedra, plantas mezcladoras y torres de iluminación.
- Agricultura y riego; granjas de ganado y pollos.
- Hoteles y hospitales, lofts, centros asistenciales, clínicas.
- Oficinas, tiendas, fábricas, talleres, edificios, complejos deportivos, centros comerciales, bancos y gasolineras
- Empresas de alquiler, vehículos de servicio móvil, hospitales móviles, y otras instalaciones móviles.
- Aeropuertos, puesta en marcha inicial de los vehículos aéreos, servicios terrestres.

Construcción

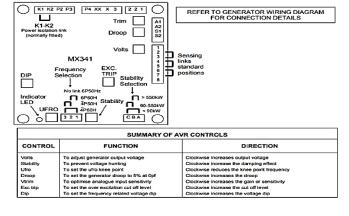
Los alternadores de Jobenergy se fabrican de acuerdo con los requisitos de la norma TSE 60034-1; IEC 60034-1. Utilizando los mejores estándares de calidad durante la fabricación, el resultado es un funcionamiento seguro y una gran durabilidadLos estilos de montaje normalmente suministrados son; Rodamiento simple con acoplamiento mediante bridas y disco flexible. Rodamiento doble con acoplamiento mediante brida.

Rendimiento eléctrico y de bobinado

Todos los devanados de los estatores de los alternadores tienen un paso de 2/3. Esto elimina los armónicos triples (3º, 9º, 15º ...) en la forma de onda de tensión y se considera que es el diseño óptimo para el suministro sin problemas de cargas no lineales. El diseño de paso de 2/3 evita corrientes neutras excesivas que a veces se ven con pasos de devanado más altos, cuando están en paralelo con la red eléctrica. Un devanado amortiguador totalmente conectado reduce las oscilaciones durante el funcionamiento en paralelo. Este devanado, con paso de 2/· y diseños de polos y dientes cuidadosamente seleccionados, asegura una distorsión de forma de onda muy baja. En el cuerpo se utilizan metales silíceos de alta calidad y aumenta la eficiencia del alternador.


Sistema de Excitación y Reguladores Automáticos de Voltaje (AVR)

El sistema de control de autoadvertencia suministra energia desde el estator principal al estator de advertencia a través del AVR. Los semiconductores de lata eficiencia de AVR (diodos transmisores, etc.) permiten elevar positivamente la baja tensión permanente. La salida del puente de diodos del rotor de excitación trifásica alimenta el área de excitación del rotor principal. Existe un varistor que protege el puente de diodos y actúa como tapón de descargas que pueden ser cortocircuitadas o similares.


Con el sistema de relación Frecuencia/Voltaje (U / F), protege el AVR y el alternador contra la baja frecuencia. Brinda la oportunidad de ajuste de voltaje dentro de los límites de \pm 5% para el ajuste de voltaje externo.

Los Reguladores Automáticos de Voltaje (AVR) están especialmente diseñados y se adaptan a operaciones de funcionamiento tanto simples como paralelas para sistemas autoexcitados y excitados por separado (PMG).

Terminal y Caja de Terminales

Los generadores estándar son trifásicos reconectables con 12 extremos llevados a los terminales, que están montados en una cubierta en el extremo no impulsor del generador. Una caja de terminales de chapa de acero contiene el AVR y proporciona un amplio espacio para los arreglos de cableado y prensaestopas de los clientes. Dispone de paneles extraíbles para facilitar el acceso.

Aislamiento / Impregnación (VPI)

El sistema de aislamiento es clase H. Todos los componentes del devanado están impregnados en una resina de poliéster insaturada de temperatura de clase 200. La impregnación proporciona la rigidez y la protección necesarias contra las duras condiciones ambientales., típico para las aplicaciones del generador.

Los alternadores Jobenergy se entregan con sistema de aislamiento Jobenergy. Este sistema de aislamiento se basa en el sistema de "Impregnación a Presión al Vacío" (VPI) que fue desarrollado en cooperación con los proveedores de material aislante más reconocidos en todo el mundo. Usando resina especial a base de epoxi; este sistema de aislamiento asegura un perfecto aislamiento de los devanados de los alternadores y no emite gases nocivos al medio ambiente.

Equilibrio Dinámico

Las partes giratorias (Rotor principal, rotor excitador, grupo de diodos, ventilador) están equilibradas dinámicamente con mayor precisión que la requerida por la Norma TSE EN IEC 60034-14 e ISO2372, asegurando niveles mínimos de desequilibrio residual.

Formas de Onda / Interferencia de Radio

Los alternadores están diseñados para dar una excelente forma de onda de salida. El contenido armónico total de la forma de onda del voltaje de línea sin carga es inferior al 5 % según los límites especificados por las normas TSE/IEC. Los alternadores tienen una interferencia de radiofrecuencia insignificante y cumplen con los límites generales permitidos por VDE 0875 (N). El valor TIF es <50 y el valor THF es <2%.

Calificaciones Transitorias

La caída de tensión transitoria debido a la aplicación de carga completa con un factor de potencia de 0,8 es inferior al 18 % La tensión de salida se recupera hasta un 3 % del valor nominal en menos de 0,3 segundos.

Servicio continuo / S1 – Temperatura Ambiente / 40°C

El alternador opera a potencia nominal por tiempo ilimitado con posibilidad de sobrecarga hasta 10% por 1 hora cada 12 horas, sin daño a su sistema de aislamiento. El S1, también llamado servicio continuo o principal, se aplica principalmente donde no hay otra fuente de energía disponible, como, por ejemplo; Grupos para alquiler, Grupos para riego, refrigeración y aplicación para horas punta. Para servicio continuo, se acepta un aumento de temperatura en los devanados de hasta 125°C.

Servicio en Espera (Reserva) – Temperatura Ambiente / 40°C

El grupo de generador opera como respaldo de energía con cargas variables en situaciones de emergencia en lugares abastecidos por la red/empresa de servicios públicos u otra fuente de energía principal. En este tipo de servicio, la maquina no acepta sobrecargas y trabaja con cargas variables hasta la potencia nominal del Servicio en Espera (40°C). Se acepta un aumento en la temperatura del devanado de hasta 150°C (Según Norma TSE 60034 / IEC 60034), sin embargo, si eso ocurre, la vida útil del alternador se reduce de 2 a 6 veces. El uso del alternador en servicio de espera está limitado a 500 horas al año.

Condiciones de operación

Al elegir un alternador, se debe tener en cuenta la "ALTITUD", la "TEMPERATURA DE AMBIENTE" y el "FACTOR DE POTENCIA". Las caídas de potencia deben calcularse con la ayuda de la siguiente tabla y la determinación de la potencia debe realizarse en consecuencia

Altitud

La potencia nominal se refiere a instalaciones hasta 1000 metros sobre el nivel del mar. Para aplicaciones por encima de esta altitud, se debe aplicar el siguiente factor de corrección de potencia.

Altitud (m)	<1000	<1500	<2000	<2500	<3000
Factor K	1	0.96	0.93	0.90	0.86

Factor de Potencia (Cos Q)

El factor de potencia nominal es 0,8 en atraso. Para aplicaciones con valor de factor de potencia diferente de 0,8, se debe aplicar el siguiente factor de corrección.

Temperatura de Ambiente

Las potencias nominales se refieren a instalaciones con temperatura de ambiente de 40°C. Para aplicaciones diferentes de 40°C, se debe aplicar el siguiente factor de corrección de potencia.

Temperatura de Ambiente	30°C	35°C	40°C	45°C	50°C	55°C
Factor K	1.04	1.02	1	0.96	0.93	0.90

Clase de Aislamiento Térmico

La clase de aislamiento determina la temperatura máxima permitida que un alternador puede operar sin dañar el sistema de aislamiento.

Factor de Potencia (Cos Q)	0.80	0.70	0.60	0.30	0	
Factor K	1	0.93	0.88	0.82	0.80	

Clase de Aislamiento	Temperatura Máxima Permitida
F	155 ºC
н	180 ºC

Aumento de Temperatura

El aumento de temperatura es el aumento por encima de los valores nominales de temperatura de ambiente de 40°C.

Aumento de Temperatura	Temperatura C°
В	80 ºC
F	105 ºC
Н	125 ºC

La aplicación de reserve permite que los devanados funcionen más calientes que el límite de aumento de temperature de las clase H, por lo tanto, para un ambiente de;

40°C Temperature Rise: 150°C

27°C Temperature Rise: 163°C

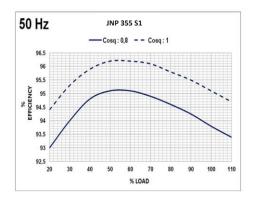
Valores nominales del Grupo Electrógeno

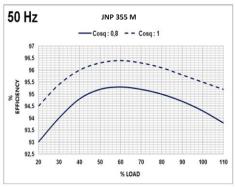
Calificación del G.E	Energía de Reserva de Emergencia (ESP)	Potencia Principal por tiempo limitado (LTP)	Potencia nominal Principal (PRP)	Potencia de funcionamiento continuo (COP)
Tipo de Carga	Variable	Constant	Variable	Constant
Horas operativas anuales	200	500	Unlimited	Unlimited
Carga promedio	70%	100%	70%	100%
sobrecarga	No	No	10% 1 Hour in Every 12	No
Clasificación del Alternador	Espera	Espera	Continuou	Continuou
Ciclo de Trabajo	S10	S10	S1	S1
Clasificación del Alternador	Espera 150/40°C	Espera 150/40°C	Clase H 125/40°	Clase H 125/40°
Clasificación del Alternado	Espera 163/27°C	Espera 163/27°C	Clase H 105/40°	Clase H 105/40°

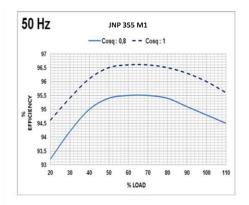
Datos Técnicos del Alternador - 50Hz

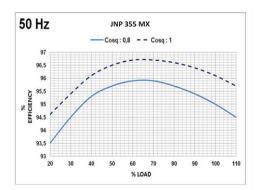
4 POLOS 1500 RPM 50Hz

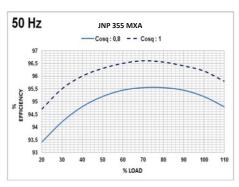
Datos típicos

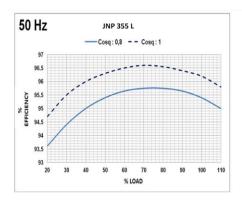

Clase de Aislamiento	Н	Sistema de control	Auto-excitado
Paso Sinuoso	2/3 - (N° 6)	Modelo A.V.R.	Estándar SX440/MX 321 + PMG
Alambres	12	Regulación de voltaje	± 1.0 %
Prueba de goteo	IP 23	Corriente de cortocircuito sostenida	300% (3 IN) : 10s
Altitud	≤ 1000 m	Total armónico (*) TGH / THC	< 4 %
Sobrevelocidad	2250 min-1	Forma de Onda: NEMA = TIF - (*)	< 50
Flujo de Aire	1.035 m³/sec	Forma de Onda: I.E.C. = THF - (*)	< 2 %
Unidad de rodamiento		Rodamiento sin accionamiento	6314 - 2RZ

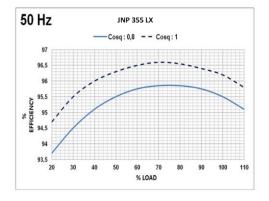

^(*) Contenido total de armónicos línea a línea, sin carga o con carga lineal y equilibrada nominal completa.

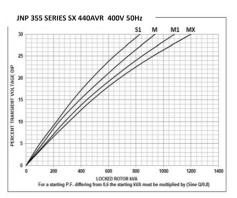

		50 Hz	kVA / kW – Factor	de Potencia (CosQ)	= 0,8			
Ambiente de Trabajo C°			Continuo / 40°	С		Espera / 27 °C		
Clase / Aumento C°			H / 125 ° K			H / 163° K		
Serie Estrella(V)		380/220	400/231	415/240	380/220	400/231	415/240	
Estrella paralela (V)		190/110	200/115	208/120	190/110	200/115	208/120	
Serie Delta(V)		220	230	240	220	230	240	
	kVA	555	555	566	610	610	623	
JNP 355 S1	kW	444	444	453	488	488	498	
	kVA	600	600	612	660	660	673	
JNP 355 M	kW	480	480	490	528	528	538	
INID 255 A44	kVA	659	659	672	725	725	739	
JNP 355 M1	kW	527	527	538	580	580	591	
IND 255 MV	kVA	700	700	717	770	770	789	
JNP 355 MX	kW	560	560	574	616	616	868	
JNP 355 MXA	kVA	750	750	765	825	825	842	
JITI JJJ WIAA	kW	600	600	612	660	660	674	
JNP 355 L	kVA	773	773	788	850	850	867	
JH 533 L	kW	618	618	630	680	680	694	
JNP 355 LX	kVA	850	850	867	935	935	954	
JINF 333 LA	kW	680	680	694	748	748	763	

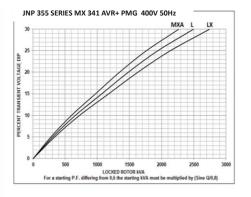

REACTAN	CIAS (%) -	- CONSTAI	NTES DE T	IEMPO (ms) : CLASE: H	/ 400 V		
SERIE DE TENSIÓN ESTRELLA	400 V	355\$1	355M	355M1	355MX	355MXA	355L	355LX
EJE SÍNCRONO DIR.	Xd	2,95	2,72	2,83	2,62	2,58	2,57	2,55
EJE TRANSITORIO DIR.	X'd	0,16	0,14	0,15	0,14	0,14	0,14	0,14
EJE SUBTRANSIENTE DIR.	X''d	0,12	0,1	0,11	0,1	0,1	0,1	0,1
REACTANCIA DEL EJE QUAD.	Xq	2,4	2,24	2,21	2,19	2,18	2,16	2,19
AXIS SUBTRANSIENTE CUAD.	X''q	0,24	0,25	0,24	0,23	0,24	0,25	0,23
REACTANCIA DE FUGA	XL	0,06	0,04	0,05	0,04	0,04	0,05	0,04
SECUENCIA NEGATIVA	X2	0,17	0,17	0,16	0,15	0,15	0,15	0,15
SECUENCIA NULA	X0	0,1	0,09	0,08	0,07	0,065	0,06	0,065
		OTROS D	ATOS – CLAS	E H / 400 V				
CONST. T'd DE TIEMPO TRANSITORIO		0,08 s	0,08 s	0,08 s	0,08 s	0,08 s	0,08 s	0,08 s
CONST. T"d SUB-TRANSTIEMPO		0,012 s	0,012 s	0,012 s	0,012 s	0,012 s	0,012 s	0,012 s
CONST. T'do O.C. DE TIEMPO DE CAMPO		2 s	2,2 s	2,5 s	2,5 s	2,5 s	2,5 s	2,5 s
CONST. Ta TEIMPO DE ARMADURA		0,017 s	0,017 s	0,019 s	0,019 s	0,019 s	0,019 s	0,019 s
REALCIÓN DE CORTOCIRCUITO		1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd


Curvas de Eficiencia Trifásica 3 Fases/400 V/50 Hz y Caída de Tensión Transitoria Porcentual y Devanados del Alternador









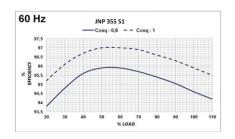
ALTERNATOR WINDINGS									
4 Pole	50 Hz - 1500 R.P.M								
Phase	3	3	3	3	3	1	1		
Connections	人	\triangle	人	\triangle		\triangle			
Number of Leads	6	6	12	12	12	12	12		
Standard Winding	380 - 400 - 415V	220 - 240V	380 - 400 - 415V	220 - 240V	190 - 208V	220 - 240V	220 - 240V		

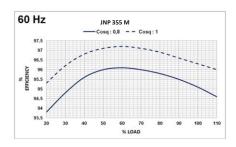
Los cables de cobre 100% de alta calidad se utilizan en los rotores, estatores y cableado de excitación de los alternadores JCBENERGY. Todas las láminas de metal utilizadas en la producción sin metales silíceos. Por lo tanto, los alternadores JNP tienen una mayor eficiencia en comparación productos ejemplares.

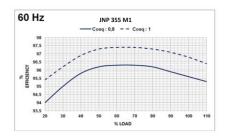
4 POLOS 1800 RPM 60 Hz

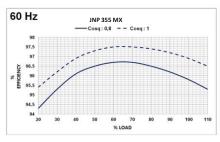
Datos Típicos

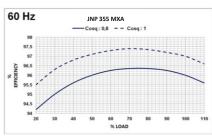
Clase de Aislamiento	Н	Sistema de Control	Auto-excitado
Paso Sinuoso	2/3 - (N° 6)	Modelo A.V.R.	Estándar SX440/MX341+PMG
Alambres	12	Regulación de Voltaje	± 1.0 %
Prueba de goteo	IP 23	Corriente de cortocircuito sostenida	300% (3 IN) : 10s
Altitud	≤ 1000 m	Total Armónico (*) TGH / THC	< 5 %
Sobrevelocidad	2250 min-1	Forma de Onda: NEMA = TIF - (*)	< 50
Flujo de Aire	1.312 m³/sec.	Forma de Onda: I.E.C. = THF - (*)	< 2 %
Unidad de Rodamiento	-	Rodamiento sin accionamiento	6314 - 2RZ

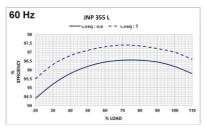

^(*) Contenido total de armónicos línea a línea, sin carga o con carga lineal y equilibrada nominal completa.

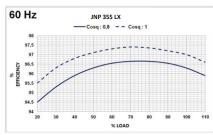

60 Hz kVA / kW – Factor de Potencia (CosQ) = 0,8								
Ambiente de Trabajo	o C°	(Continuo / 40°	C	Espera / 27 °C			
Clase / Aumento C°			H / 125 ° K		H / 163° K			
Serie Estrella(V)		416/240	440/254	480/277	416/240	440/254	480/277	
Estrella paralela (V)		208/120	220/127	240/138	208/120	220/127	240/138	
Serie Delta(V)		240	254	277	240	254	277	
JNP 355 S1	kVA	661	696	733	727	766	806	
JNF 333 31	kW	529	557	586	582	613	645	
JNP 355 M	kVA	697	734	773	767	807	850	
JIVE 222 IVI	kW	558	587	618	614	646	680	
JNP 355 M1	kVA	743	782	824	817	860	906	
3.4. 3332	kW	594	626	659	654	688	725	
JNP 355 MX	kVA	789	831	875	868	914	963	
JINE 222 IVIX	kW	631	665	700	694	731	770	
JNP 355 MXA	kVA	846	891	938	931	980	1032	
JIVP 333 IVIAA	kW	677	713	750	745	784	826	
JNP 355 L	kVA	865	911	956	951	1002	1055	
JINF 333 L	kW	692	729	767	761	802	844	
JNP 355 LX	kVA	945	995	1047	1040	1095	1152	
JINA 222 FY	kW	756	796	838	832	876	922	

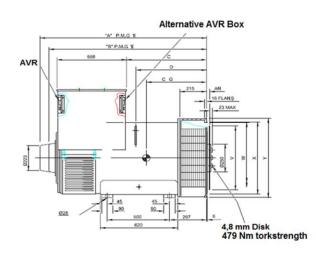

REACTANCIAS (%) – CONSTANTES DE TIEMPO (ms) : CLASE: H / 480 V										
VOLTEO SERIE ESTRELLA	480V	355\$1	355M	355M1	355MX	355MXA	355L	355LX		
DIR. EJE SÍNCRONO	Xd	3,0975	2,856	2,9715	2,751	2,709	2,6985	2,6775		
DIR. EJE TRANSITORIO	X'd	0,168	0,147	0,1575	0,147	0,147	0,147	0,147		
DIR. EJE SUBTRANSITORIO	X''d	0,126	0,105	0,1155	0,105	0,105	0,105	0,105		
QUAD. REACTANCIA DEL EJE	Xq	2,52	2,352	2,3205	2,2995	2,289	2,268	2,2995		
QUAD. EJE SUBTRANSIENTE	X''q	0,252	0,2625	0,252	0,2415	0,252	0,2625	0,2415		
REACTANCIA DE FUGA	XL	0,063	0,042	0,0525	0,042	0,042	0,0525	0,042		
SECUENCIA NEGATIVA	X2	0,1785	0,1785	0,168	0,1575	0,1575	0,1575	0,1575		
SECUENCIA NULA	X0	0,105	0,0945	0,084	0,0735	0,06825	0,063	0,06825		

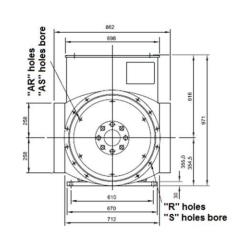

OTROS DATOS – CLASE H / 480 V										
VOLTEO SERIE ESTRELLA	355S1	355M	355M1	355MX	355MXA	355L	355LX			
CONST. T'd TIEMPO TRANSITORIO	0,08 s	0,08 s	0,08 s	0,08 s	0,08 s	0,08 s	0,08 s			
CONST. T"d SUB-TRANSTIEMPO	0,012 s	0,012 s	0,012 s	0,012 s	0,012 s	0,012 s	0,012 s			
CONST. T'do O.C. TIEMPO DE CAMPO	2 s	2,2 s	2,5 s	2,5 s	2,5 s	2,5 s	2,5 s			
CONST. Ta TIEMPO DE ARMADURA	0,017 s	0,0017 s	0,019 s							
RELACIÓN DE CORTOCIRCUITO	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd			


Curvas de Eficiencia Trifásica 3 Fases/480 V/60 Hz y Caída de Tensión Transitoria Porcentual y Devanados del Alternador








ALTERNATOR WINDINGS										
4 Pole	60 Hz - 1800 R.P.M									
Phase	3	3	3	3	3	1	1			
Connections	人		人		=	\triangle				
Number of Leads	6	6	12	12	12	12	12			
Standard Winding	380 - 480V	220 - 277V	380 - 480V	220 - 277V	190 - 240V	220 - 240V	220 - 240V			

Los cables de cobre 100% de alta calidad se utilizan en los rotores, estatores y cableado de excitación de los alternadores JCBENERGY. Todas las láminas de metal utilizadas en la producción sin metales silíceos. Por lo tanto, los alternadores JNP tienen una mayor eficiencia en comparación productos ejemplares.

DIMENSIONES

Tipo de Conexión			Tamaño				Disco de Acoplamiento					
SAE	MODELO	C-G	К	L	М	N	SAE	AN	AR	AS	AT	V
	355 S1- S2	555	1337	1266	568	493	14	25,4	8	13,5	438,1	466,6
1	355 M- M1	575	1337	1266	568	493			Adapto	r de Brida		
	355MX- MXA	595	1337	1266	568	583	SAE	R	S	T	W	X
	315L-LX	620	1412	1341	643	583	1	12	12,7	530,2	496	511,1

Productos especiales / No - Estandarizado

Alternadores de Torre de Iluminación Alternadores de Corriente Continua - (CC)

Alternadores de Soldadura Alternadores de Media Tensión - (MV)

Alternadores de Alta Frecuencia Alternadores de Alta Tensión - (HV)

Alternadores de Velocidad Variable Alternadores de Clase IP44 and IP54 - (Marino)

